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Nonlinear Filtering: 
Stochastic Analysis and Numerical Methods 

1    Statement of the Problem 

The project was concerned with the analysis of partially observed stochastic differential 
systems and, in particular, with numerical methods in nonlinear filtering. The major 
objective was to develop numerical methods that could be used in a variety of state 
estimation problems and in associated statistical problems. The research was conducted 
by a team of investigators with expertise in nonlinear filtering, SPDE's, numerical analysis, 
and statistics. 

The thrust of the research during the reporting period was in numerical aspects of non- 
linear filtering, in particular in development of numerical approximation schemes suitable 
for applications in real time target tracking. 

Filtering (estimation of a "state process" from noisy observations) is a classical problem 
in the statistics of stochastic processes. It is of central importance in navigation, image 
and signal processing, control theory, automatic tracking systems, and other areas of 
engineering and science. Filtering is one of the exemplary areas where the application 
of modern stochastic analysis and stochastic numerics lead to substantial advances in 
engineering. 

Target tracking and identification is one of the main application of nonlinear filtering 
and will be emphasized in examples below. 

The desired solution of the filtering problem is an algorithm that provides the best 
mean square estimate of the given functional of the state process. In many applications 
(most notably, battlefield target tracking) real time implementation of such algorithm is 
an important requirement. In the Gaussian case, the optimal (Kaiman) filter [39] meets 
this requirement. The real time implementation of Kaiman filter is readily available 
even for higher dimensional state processes due to the fact that in the Gaussian case the 
posterior distribution admits finite-dimensional sufficient statistics. There is a handful 
of special nonlinear situation when existence of finite-dimensional sufficient statistics for 
filtering density remains to be the case. However, in general this is not true, and one has 
to deal with infinite-dimensional posterior distributions (see section 2.1). 

The customary way to address this problem is to compute the nonlinear filtering 
density by solving the Kushner or Zakai equations or in the case of discrete observations, 
the Fokker-Planck equation. As we show below, it is impossible to obtain corresponding 
solutions in real or almost real time using direct methods. Thus, special techniques are 
needed. 
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2    Summary of Results and Accomplishments 

The main directions of the research and accomplishments of the project: 

• Development of a spectral approach to optimal nonlinear filtering and related ef- 
fective numerical approximations to the optimal nonlinear filter based on Wiener 
Chaos Expansion; 

• A complete solution of "the last Wiener problem" - development of a Wiener type 
optimal nonlinear filter; 

• Development of approximation methods for nonlinear filtering based on the projec- 
tion filter and the assumed density filter; 

• 

• 

• 

• 

Nonlinear filtering with distributed observations; 

Clutter removal in nonlinear filtering for imaging data; 

Martingale problems for stochastic PDE's; 

Spectral approach to parameter estimation in SPDE's; 

Exponential forgetting of the initial condition for nonlinear (prediction) filters and 
their derivatives with respect to some parameter; 

Geometric ergodicity for the extended process whose components are the unobserved 
state process, the observation process, the prediction filter, and its derivative; 

Large time asymptotics (consistency, asymptotic normality) of parameter estimators 
in partially observed systems. 

2.1    Numerical Approximations to the Optimal Nonlinear Filter 
Based on Wiener Chaos Expansions 

The case where the state process, Xt, evolves in continuous time, while the observations, 
Yt, are made in discrete moments t = tk, k = 0,1,..., is perhaps the most interesting case 
for applications. However, since in the case of continuous observation separation of para- 
meters and observations is a more delicate problem, we present the results for this more 
difficult case. The approach is based on the technique of Wiener Chaos Expansions [62]. 

To be specific, let us consider the problem of estimation of a function of the state 
process, f{Xt), at moment t based on observations Y* = [Ys,s < t} (i.e., filtering) 
assuming that the signal and observation processes are described by the Ito stochastic 
differential equations 

dXt = b(Xt)dt + a(Xt)dWu    X0 = x0, (1) 

dYt = h(Xt)dt + dVt (2) 
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where Wt and Vt are independent standard Brownian motions, t <E R+ = [0, oo). The re- 
sults may be extended to the case (important for some applications with "passive noises" 
like clutter, e.g. IRST systems, see section 2.3) where both the system noise and mea- 
surement noise are correlated processes and are correlated between each other. However, 
here for the sake of simplicity we consider simpler (still general enough) "uncorrelated" 
models (1), (2). 

It is well known that the optimal mean square filtering estimate ft = E[f(Xt)\Y
t]. 

Define the process 

At = exp {jT h(Xa)dYa - \j^ \h(Xa)\
2ds} 

where Xs is a solution of the Ito equation 

dXt = b(Xt)dt + cr(Xt)dWt,    X0 = x0. 

Also, define the new probability measure P by rfP = Af
-1dP and by E denote the operator 

of mathematical expectation with respect to this measure. Note that the measure P is a 
Wiener measure and the process At may be interpreted as a likelihood ratio process for 
the "signal+noise" and "noise only" models. Then usual Bayesian argument yields 

/t = B[/(xt)A«|y*]/E[At|y
|] 

where <pt[g] = E[^(Xf)At|F*] is the so called unnormalized optimal filter. 

Under very general assumptions, this filter is of the form 

E[f(Xt)At\Y
t}= f   f(x)pt(x)dx, 

where the conditional probability density pt(x), usually referred to as the unnormalized 
filtering density (UFD), can be characterized as the unique solution of the following SPDE 
(Zakai equation): 

dpt(x) = £*pt(x) dt + J2 hkPt(x) dYt
k ,    po{x) = TT(X) (3) 

k=\ 

(see [15], [53], [64],   [59]). Here we used the notation 

d              Q2 d    . d 
£* = V* aitj—- Y]b—- 

ij—l        OXiOXj       i=1     OXi 

for the operator adjoint to the partial differential operator associated with (1) with co- 
variance matrix a = (ai>j) = (l/2)ercr* (d and r are the dimensions of vectors Xt and Yu 

respectively), ir(x) is a "pdf" for the initial condition. We also assumed, without loss of 
generality, that the covariance matrix of measurement noise is a unit matrix. 
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Thus, the optimal nonlinear filtering problem reduces to computing nonlinear filtering 
density by solving the Zakai equation (3) or the Kushner equation (see [28]-[30]) or in the 
case of discrete observations, the Fokker-Planck equation. 

Many applications, such as target tracking, require to solve these equations on-line, 
which is the most formidable obstacle on the way to real time implementation of optimal 
nonlinear filters. This problem is plagued by the curse of dimensionality. Specifically, if 
the spatial dimension d > 3, then the computational complexity of solving the second 
order parabolic PDE's like Fokker-Planck equation or stochastic PDE's as Kushner's or 
Zakai's equations becomes too high for direct on-line implementation. 

On the first stage of our research supported by this grant, we proposed a spectral 
approach to nonlinear filtering, which allows us to circumvent the aforementioned com- 
putational difficulties by separating parameters and observations and shifting these time 
consuming operations off line (see [41]-[45], [49]). In the resulting algorithm, the on-line 
computations can be organized recursively in time and are relatively simple even when the 
dimension of the state process is large. Moreover, certain functionals of the state process 
can be estimated without computing the unnormalized filtering density. For the contin- 
uous time case, the approach is based on the Wiener Chaos Expansions and is explained 
below. 

The main idea of the Wiener Chaos approach is to represent the unnormalized filtering 
density pt(x) in the form 

pt(aO = £</>>, M)rM) • (4) 
a 

In this formula r is an arbitrary point of the interval [0,t), the functions £a (r,t) are 
normalized Wick polynomials (products of Hermit polynomials) of the Wiener integrals 
J*mk(s)dYs, where \mk, k = 1,2,- • •} is a complete orthonormal system (CONS) in 
L2(0,t), (f)a(r,t,x) are deterministic Fourier coefficients in the Cameron-Martin orthogo- 
nal decomposition oipt{x) and the summation in (4) is over all multi-indices a. 

It is also proven in [40], [43], [49], [51], [52] (and this is the central part of the result) 
that (f>f(x) satisfies a recurrent system of Kolmogorov-like equations. This system has 
an especially simple form if the observation process Yt is one-dimensional. In this case, 
given a multi-index a = (ai, a2, • • •) 

^-cf><*(r,s,x) = £*<l>a(r,s,x) + J2*kmk(s)hk(x)(t>a(k)(r,s,x) ,s>r 
ds * (5) 

<f)a(r,r,x)   = pr (x) l{|a|=0} 

where C* is the same operator as in (3), and 

a(k) = (ai,cx2,--- ,ak-i,ak - l,ak+1,---) . 

Below, system (5) is referred to as ^-system. 
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The Wiener Chaos expansion for UFD (4) by itself does not provide yet the desired 
effect of separation. Indeed, on every time step, a solution of the S-system depends 
on the previous observation via its initial condition, and so could not be solved off line. 
To achieve complete separation, we consider the spatial Fourier coefficients of the UDF, 

VVi (*) = /R<* Pt (z) en (x) dx, n = 1,2,.... 

Let 0 = t0 < ti < ... < tM = T be a uniform partition of the interval [0, T] with step 
A (so that U = iA, i = 0,... ,M). Let {m|} = {r4(s)}fc>i be a CONS in L2([*i-i,**])- 
It was shown in [43] that the Fourier coefficients $n (t) satisfy the following recursive 
equation: 

ipi(0) = I   p(x)el(x)dx,    Mk) = T,Qin(k)^n(k-l),    fc = l,2,... (6) 
J-Rd n 

where 

Vi(fc) = $(**),    Qin{k) = '£rlanC(tk-i,tk),    Tlan= f   en{x)Slel{x)dx 
a JR 

and where S^ei is a solution of the 5-system (5) subject to the initial condition 0a(0,0, x) = 

ei (x) l{|a|=0}- 

Note that the kernel T is the only term in (6) that requires solving PDE's. This term is 
defined only by the parameters (the coefficients) of the state and observation processes (1), 
(2), and by the complete orthonormal system {e{\, and so it can be precomputed off line. 
On the contrary, the Wick polynomials £a (ti-i,U) are defined only by the observation 
process {Yt, U-i < t < U} and the chosen orthonormal system {m\}k>i- Hence (6) 
possesses the desired separation property. 

The algorithm may be summarized as follows: 

1. Before the observations become available 

a) compute ißi(0) := (p, e{) and fi = (f,ei)   where p is the initial density; 

b) compute S^ei, a solution of the S—system (5) subject to the initial condition 
(j)a(0,0,x) = et (x) l{|a|=o}; 

c) compute Tian = fRd en (x) S^et (x) dx. 

2. When the observation become available (on the k-th step), k = 1,2,... 

a) compute £a (tk-i,tk); 

b) Compute 1pi(k) = EaEnV'n(^ - l)rjQn£a(ifc-l,£fc); 

c) compute the UFD and the optimal filter, 

Piu = T,Mk)ei(x) (7) 
i 

L = EMk)ei(x)/Y:Mk)(hei). (8) 
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We refer to this algorithm as the spectral separating scheme (S3). Of course, to make 
S3 computable one has to truncate all the involved infinite series. The convergence of the 
resulting approximation algorithm and a thorough error analysis has been done in [43], 
[51]. Here we only mention that even in the case of low order approximation based on 
Wick polynomials of order \a\ = 2 using only one element of the basis {mk} the mean 
square error of approximation for the UFD and the optimal filter is of the order of A2. 

With the appropriate choice of bases the on-line computational complexity of S3 is 
linear, i.e. the number of operations per step is O {Nd) where Nd is the total number of 
spatial points (see [42]). 

We would like to stress the following features of the algorithm: 

(1) The time consuming operations of solving the partial differential equation (5) and 
computing integrals are performed off line; 

(2) The overall amount of the off-line computations does not depend on the number of 
the on-line time steps; 

(3) Formula (8) can be used to compute an approximation to ft (e.g. conditional mo- 
ments) without the time consuming computations of the filtering density pt(x) and 
the related integrals; 

(4) Only the Fourier coefficients ^ must be computed at every time step, while the 
approximate filter ft and/or the filtering density pt(x) can be computed as needed, 
e.g. at the final time moment. 

Based on the principle of separation of observations and parameters, we developed 
a family of fast stochastic numerical algorithms for nonlinear filtering (see [42]-[44]). 
These numerical schemes were implemented and successfully tested in several problems 
of target tracking, including tracking of acutely maneuvering targets with angle-only 
measurements, fusion of kinematic (radar) tracking and imaging, etc. 

2.2    Nonlinear Filtering with Distributed Observations 

Filtering of a signal with distributed observation is one of the most important and at 
the same time most challenging problems of signal and image processing. A distinctive 
feature of this particular problem is that the observation is a sequence of random fields 
rather then a random process. 

It was explained above that the main difficulty in practical implementation of nonlinear 
filters and predictors is their computational complexity. The main bulk of computations 
involved in nonlinear filtering comes from solving associated PDE's (Zakai or Kushner 
equations if the observation process is continuous in time and Fpkker-Planck equation if 
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it is discrete). In the case of distributed observation the problem becomes even harder 
due to high dimensional measurements. 

The spectral approach to nonlinear filtering developed by the PI and his collaborators 
in the setting with low dimensional observation can be extended to the case of distributed 
measurements. Moreover we argue that in addition to being temporally recursive, the 
resulting algorithm is also spatially recursive. More specifically, it can be shown that if 
at some point additional measurements become available, then they can be incorporated 
into the optimal filter without recomputing the latter from scratch. This property is very 
important since it allows to perform sequential multi-resolution filtering. 

Example. An important practical motivation for the above setting is a problem of deter- 
mining the position of a dim target moving in a plane or in 3D space, using a sequence of noisy 
images of the region of the space in which it evolves (see Figure 1). 

If the signal-to-noise ratio (SNR) is large enough, the target could be localized on a single 
image using the well developed theory of matched filters (see Reed et al [58]). The problem of 
detection becomes much more difficult if localization of the target on a single image is impossible 
or at least hard and fraught with ambiguity (for example, the target may not be visible at all on 
any single frame, see Figure 2). In the latter case one has to align successive frames according 
to typical patterns of target dynamics. If the alignment is done properly the signals of the 
various images would add up and produce a "spike" with a sufficiently large SNR while the 
noises would cancel out. This approach to detection of a dim target is usually referred to as 
"tracking before detection" (TBD). Unfortunately the alignment of successive frames necessary 
for TBD is extremely difficult in the case of an acutely maneuvering noncooperative target. 

To counter the aforementioned difficulty, an algorithm for frame alignment based on optimal 
nonlinear filtering and prediction was proposed in [26]. The results of implementation of the 
spatial-temporal nonlinear filtering algorithms with the use of Haar basis are shown in Figure 3. 
The target is completely localized after 30 frames of processing. 

2.3    Clutter Removal In Nonlinear Filtering For Imaging Data 

The majority of filtering methods used for target tracking and detection strongly rely 
on a "signal-plus-noise" (SPN) assumption for a mathematical model of initial data. 
However, the original sensor data typically does not fit such an assumption due to the 
presence of clutter components. Thus, an important issue is to eliminate the clutter and to 
reduce the original measurements to a SPN-model. To accomplish this goal, we consider 
nonparametric statistical methods. 

Nonparametric regression algorithms can be regarded as methods of clutter estimation, 
or function smoothing, such that the residuals between the original data and its smoothed 
version, or estimate, would be reasonably approximated by SPN-models. Kernel methods 
provide a powerful tool for such analysis due to both computational transparency and 
asymptotic optimality in various settings of interest for observations in Rd with arbitrary 
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d > 1, see [17]. For example, if 2-D observations are of the form 

Zij = f(xityj) + &,   Xi = i/nu j = j/n2,   i = 1,... ,nuj = I,... ,n2, 

where f(xt, yj) is a value of an unknown function / at a point [xh yj), {fy} are random 
variables with zero means, then a kernel estimator is given by 

where iVi,^ are window sizes in corresponding directions, K(x,y) is a deterministic 
function, or kernel, K : R2 -+ Ä1, such that JK(x,y)dxdy = 1. It is readily seen that 
kernel estimators are weighted moving averages of observations. 

The application of various kernels to real data sets is discussed in [37] along with the 
verification of "white noise" assumption for the model of residuals. The latter analysis 
relies on nonparametric rank methods [25]. The results of data smoothing and clutter 
removal are shown in Figure 4 a,b. 

2.4    Martingale Problems for Stochastic PDE's 

The results related to constructing the optimal nonlinear filters, reported above, would 
not have been possible without substantial development of the theory of stochastic PDE's. 
During the reporting period we made a substantial progress in this crucial area. 

Specifically, we studied nonlinear stochastic PDE's with non-smooth (in some cases 
singular) coefficients. The examples include stochastic Navier-Stokes equation, Langevin 
(stochastic quantization) equation in P{ip)2 Euclidean quantum field theory, SPDE's for 
the super-Brownian motion and some related superprocesses. We concentrated on ex- 
istence, uniqueness, absolute continuity and singularity of distributions, and ergodicity 
problems for these equations. 

Various classes of stochastic differential equations, where strong solutions do not exist 
or where their existence is very difficult to prove, can be handled using the martingale 
approach. For example, the martingale approach is very useful in situations with non- 
smooth coefficients typical of many SPDE's arising in physics and other sciences. These 
include the majority of equations obtained as limits of branching particle systems, equa- 
tions of stochastic hydrodynamics, stochastic quantization equations in quantum field 
theory. 

Our paper [48] deals with martingale problems in topological vector spaces and their 
applications for stochastic PDE's. In particular, we derive the necessary and sufficient 
criteria for absolute continuity of solutions to martingale problems. One interesting ap- 
plication of this result is the characterization of all the measures absolutely continuous 
with respect to super-Brownian motion. We also apply the obtained criteria to estab- 
lish uniqueness and existence of certain classes of SPDE's including quasi-linear SPDE's 
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with measurable (but not necessarily continuous) "drift". In the same paper we extended 
Viot's compactness method and applied it to solving nonlinear SPDE's. Specifically, we 
investigated existence of weak solutions to stochastic Navier-Stokes type equations and 
some other quasi-linear SPDE's with polynomially growing coefficients. 

In [48] we also addressed the P{<p)2 stochastic quantization equation. The equation 
of stochastic quantization was originally introduced and studied by physicists (see Parisi 
and Wu [56], Jona-Lasinsio and Mitter [24]) with the intent to bring dynamics in P((p)2. 
Euclidean quantum field theory. The idea was to demonstrate that this equation plays 
the role of Langevin's equation, in that its solution is an ergodic Markov process whose 
unique invariant measure is the Euclidean P{ip)2 measure. Due to the singular nature 
of the nonlinear term, the stochastic quantization equation is quite challenging. In [48] 
we proved the long standing conjecture that in the non-regular case the distributions of 
stationary solutions to this equation and the equation for the free field are singular. 

2.5 Spectral Approach to Parameter Estimation in SPDE's 

Another important issue was the parameter estimation for stochastic evolution equa- 
tion. In [18] and [46] we studied parameter estimation for randomly perturbed PDE's. 
Specifically, we investigated asymptotic properties of estimators based on finite number 
of observable Fourier coefficients of the random field described by the PDE in question. 
Necessary and sufficient conditions were found for the consistency, asymptotic normality 
and efficiency of the estimates when the number of spatial modes increases. 

These results were applied to some parametric models of passive scalars transport 
by turbulent flow. In particular, it was shown that the diffusivity exponent in the sto- 
chastic (advection-diffusion) equation for heat transport is always consistent, while the 
consistency of the feedback parameter estimate depends on the spatial dimension. Unlike 
previous works on the subject, no commutativity is assumed between the operators in the 
equation. 

2.6 Projection Filter 

Here we again consider a filtering problem where the state evolves according to a stochas- 
tic differential equation (SDE), and the objective is to estimate the state from nonlinear 
observations in additive Gaussian white noise (see (1), (2)). As we stated above, the 
filtering problem consists in the calculation of the whole conditional probability distrib- 
ution of the state given past observations, which results in an infinite dimensional filter. 
Under some regularity assumptions, the conditional probability distribution is absolutely 
continuous with respect to the Lebesgue measure, and the conditional density pt is the 
unique solution of the Kushner-Stratonovich equation, a stochastic PDE. 

The projection filter is a finite dimensional nonlinear filter based on the differential 
geometric approach to statistics. In Brigo, Hanzon and LeGland [6, 9] the projection filter 
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was particularized to exponential families in the framework of SDE's on manifolds. The 
projection filter is defined by orthogonally projecting the right-hand side of the Kushner- 
Stratonovich equation for y/pl onto the tangent space of a finite dimensional manifold of 
(square-root of) probability densities, according to the Fisher metric and its extension to 
infinite dimensional space of square roots of densities, known as the Hellinger distance. 
In practice, we use the manifold EM1/2(c) associated with an exponential family EM(c) 
defined by the coefficients c = {ci,-• • ,crnj. Although at first sight the resulting equation 
may look like a stochastic PDE, it is just a finite dimensional SDE for the parameter 9t 

of the projection filter density p(-,9t). 

Another approximation method in nonlinear filtering is the assumed density filter 
(ADF) obtained by closing the equations for a few conditional moments, under the as- 
sumption that the exact conditional density is of a given form, see Kushner [31]. In the 
case of the exponential family EM(c), one would 

1. write the equation for the evolution of the conditional c-moment r\t = 'E[c(Xt) \ yt], 
and 

2. evaluate all the conditional expectations appearing in the r.h.s. of the equation as if 
the conditional density was the density in the exponential family uniquely defined 
by the expectation parameter r\t. 

The It6-based ADF and the Stratonovich-based ADF are different filters in general, 
which is due to the logical inconsistency that is inherent to the ADF-concept: selecting a 
different set of equations to which it is applied, ieads to different results. 

Main results. We have shown in Brigo, Hanzon and LeGland [9] that it is possible to 
define simplifying exponential families EM(c*) and EM(c#) such that the corresponding 
exponential projection filter has the following important properties: 

• with the choice EM(c*), the diffusion coefficient in the stochastic differential equa- 
tion for the PF parameter 9t is constant, i.e. the equation has a very simple form, 
and it is possible to define an a posteriori estimate of the local error resulting from 
the projection filter approximation, 

• with the choice EM(c'), the correction step in the nonlinear filtering algorithm with 
discrete-time observations is handled exactly, without any error. 

We have shown in Brigo, Hanzon and LeGland [8] that : 

• for any exponential family EM(c), the projection filter coincides with the Stratonovich- 
based assumed density filter, 

• with the choice EM(c*), the Ito-based ADF coincides with the Stratonovich-based 
ADF. 
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2.7    Nonobservable Systems Observed in Small Noise 

We have also studied the small noise asymptotics of the Bayesian estimator, based on 
continuous time nonlinear regression observation in additive Gaussian white noise 

dXt = mt(9)dt + edWt
9 . 

Using the Bayesian approach, we model the a priori information on the-unknown para- 
meter 9 by a prior probability distribution, and the posterior probability distribution // 
is defined by the Bayes formula. Under the usual identifiability assumption that the true 
value a of the parameter is the only minimum point of the Kullback-Leibler information 

Ka(0) = \  fT\mt(e)-mt(a)\2dt, 

the Bayesian estimator is consistent, i.e. \f => 6a in P^-probability as e j 0, see Kutoy- 
ants [32]. However, there are some practical situations where nonidentifiablilty occurs, 
i.e. where the set Ma of minimum Kullback-Leibler information does not reduce to {a}. 
In this case, the Bayesian point estimator is not relevant, and we are rather interested in 
the asymptotic behavior of the posterior probability distribution \f as e | 0. 

A prototype of this situation is the following problem. Consider a nonlinear filtering 
problem with noise-free dynamics, where the unobserved process evolves according to 
an ODE with unknown initial condition, and the observations are corrupted by a small 
additive Gaussian white noise. If the limiting deterministic system is nonobservable, then 
the corresponding statistical problem is nonidentifiable. Let us mention the TMA as a 
typical application where nonobservability occurs, see Levine and Marino [38]. 

Main results. We have studied the case where the set Ma of points with minimum 
Kullback-Leibler information is a submanifold. It is easy to show that asymptotically as 
e | 0 the probability distribution \xe is supported by Ma. We have shown that, using first 
order terms, such as the Fisher information matrix, it is possible to characterize the limit 
as e i 0 of the probability distribution //, as a random probability distribution \ia on 
Ma, absolutely continuous w.r.t. the canonical measure on Ma, and to provide an explicit 
expression for the density. 

To study the rate of convergence, we have considered the posterior probability dis- 
tribution ve of the normalized deviation [6 - 7r(0)]/e, where 7r denotes the orthogonal 
projection on the set Ma. We have characterized the limit as e j 0 of the probability dis- 
tribution /asa mixture va of random Gaussian probability distributions on the normal 
bundle space to Ma. 

2.8    Exponential Forgetting and Geometric Ergodicity 

Consider the situation where the state sequence {Xn} is a time-homogeneous Markov 
chain with finite state space S, initial probability distribution p. = (p1.), and transition 
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probability matrix Q. = (qi'j). It is assumed that only observations {Yn} are available, 
which are mutually independent given the state sequence, with conditional densities b. = 
(bl). In other words, we consider a typical hidden Markov model (HMM). 

The prediction filter, which is the probability distribution of the state Xn given past 
observations Y0, • • • ,Yn-i, solves an equation with values in the set V(S) of probability 
distributions over the finite set S. However in practice the initial probability distribution 
p., the transition probability matrix Q„ and the vector b. of observation conditional den- 
sities - which define the model P. - are generally unknown, and we consider instead the 
equation for the prediction filter {pn} associated with a wrong initial probability distri- 
bution po, a wrong transition probability matrix Q, and a wrong vector b of observation 
conditional densities. Note that these misspecification issues are of a different nature: 

• we expect that a wrong initial condition for the prediction filter is rapidly forgotten, 
so that we could use any initial condition with practically the same effect, 

• on the other hand, we expect that two different transition probability matrices, 
and two different vectors of observation conditional densities will produce two sig- 
nificantly different observation sequences, so that we could estimate the unknown 
transition probability matrix and the unknown vector of observation conditional 
densities accurately, by accumulating observations. 

Towards identification of HMM's, we consider also the gradient {wn} of the prediction 
filter {pn} w.r.t. some parameter, which solves a linear equation with values in the set 
E = {w : e* w = 0}, which is the linear tangent space to (S). Here e = (1, • • •, 1)* 
denotes the vector with all entries equal to 1. 

Main results. Under the assumption that the transition probability matrix Q is 
primitive, we have obtained an explicit upper bound for the difference between the so- 
lutions of the misspecified prediction filter equation starting from two different initial 
conditions. We have also obtained an explicit bound for the Lipschitz constant of the 
solution map associated with the misspecified prediction filter equation. 

These two non-logarithmic and non-asymptotic bounds go to zero at exponential rate 
as time goes to infinity, and as a consequence, under the additional assumption that 
the true transition probability matrix Q, is primitive as well, we have obtained an up- 
per bound for the P.-a.s. exponential rate of forgetting of the initial condition for the 
misspecified prediction filter equation. 

We have obtained similar results about the forgetting of the initial condition for the 
misspecified linear tangent prediction filter. 

Using the estimates on exponential forgetting, we have proved the geometric ergodicity 
of the extended Markov chain {Zn = (Xn,Yn,pn,wn)}, under some mild integrability 
assumption on the vectors 6. and b of observation conditional densities. 
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As a consequence, we have also proved the uniqueness of an invariant measure, and 
the existence of a solution to the associated Poisson equation. From this result, the law 
of large numbers, and the central limit theorem can be proved for the extended Markov 
chain {Zn = (Xn,Yn,pn,wn)}. 

2.9    Asymptotic Properties of the MLE and the CLSE 

We consider the problem of HMM identification (i.e. partially observed finite-state Markov 
chain), based on noisy observations. We suppose that the law of the hidden Markov chain 
depends on some unknown finite-dimensional parameter 0 G 0, and we are interested in 
the estimation of 6. 

This is the continuation of the problem presented in the previous section. Along 
with the true but unknown model P., with initial probability distribution p., transition 
probability matrix Q., and vector b, of observation conditional densities, we consider a 
parametric model {Pe, 6 G 6}, with initial probability distribution p0 ^ p,, transition 
probability matrix Q6, and vector be of observation conditional densities. 

We assume that there exists a true value a G 0 of the parameter, such that Q, = Qa 

and b, = ba. Since the initial probability distributions p, and pQ are possibly different, 
the true probability P. does not belong in general to the family {Pe, 6 G 0}, i.e. the 
statistical model is misspecified. However, it follows from the results presented above that 
a wrong initial probability distribution is rapidly forgotten, so that from an asymptotic 
point of view, P. and Pa are practically equivalent. We make the assumption that for 
the true value a G 0, the transition probability matrix Qa is primitive. 

In this parametric model, it is easy to show that many functions of interest for the 
estimation of the unknown parameter 6, e.g. the log-likelihood function or the conditional 
least-squares functional, and the gradient of these functions w.r.t. the parameter 6, can be 
expressed as additive functionals of the extended Markov chain {Z°n = (Xn, Yn,p

e
n,dpe

n)}, 
where {p6

n} is the prediction filter corresponding to the value 9 of the parameter, and 
{dpe

n} is the corresponding linear tangent prediction filter. 

Main results. Using the explicit bound for the Lipschitz constant of the solution 
map associated with the prediction filter equation, we have proved that the log-likelihood 
function and the conditional least-squares functional are Lipschitz continuous w.r.t. the 
parameter, uniformly in time. 

Using the existence of a solution to the Poisson equation associated with the extended 
Markov chain and the resulting law of large numbers and central limit theorem, we have 
been able 

• to obtain an explicit expression for the P.-a.s. limit of the log-likelihood function 
(suitably normalized), i.e. for the Kullback-Leibler information, and to prove that 
it is minimum in the true value a of the parameter; 
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• to prove the asymptotic normality of the score function (suitably normalized) and 
to obtain an explicit expression for the asymptotic covariance matrix, i.e. for the 
Fisher information matrix. 

We have obtained similar results for the conditional least-squares functional. 

These results allow us to prove 

• the convergence of the maximum likelihood estimator and the conditional least- 
squares estimator to the set of maxima of the associated contrast function, using 
the Lipschitz continuity w.r.t. the parameter of the log-likelihood function and the 
conditional least-squares functional, respectively; 

• the asymptotic normality of the maximum likelihood estimator and the conditional 
least-squares estimator. 

We have obtained similar convergence results for recursive versions of these estimators, 
using the approach of Delyon [13] and Delyon and Iouditski [14]. 

3    Diffusion of Results 

The results of our research on nonlinear filtering and SPDE's were presented by B. 
Rozovskii at several major conferences; these include: the 1996 SIAM Annual meeting 
(Kansas City), Fourth World Congress of the Bernoulli Society (Vienna, Austria), the 
35th IEEE Conference on Decision and Control (Kobe, Japan), a mini-course on Nonlin- 
ear Filtering (Special Year in Stochastic Analysis, Mathematical Science Research Insti- 
tute, Berkeley, 1997), invited talk at the International Symposium on Stochastic Control 
and Nonlinear Filtering (Los Angeles, 1997). 

Other results have been presented by Marc Joannides at the HCM Workshop on Statis- 
tical Inference for Stochastic Processes, Sonderborg, Danemark, April 29-March 3, 1996, 
and at the Journees SMAI Modelisation Aleatoire et Statistique (MAS), Toulouse, France, 
September 23-25, 1996; by Francois LeGland at the 2nd Portuguese Conference on Au- 
tomatic Control, Porto, Portugal, September 11-13, 1996, at the Workshop on Statistical 
Asymptotics for Continuous-Time Stochastic Processes, LeMans, France, January 27-28, 
1997, at the Workshop on Stochastic Control and Nonlinear Filtering, Raleigh, NC, Oc- 
tober 11-12, 1996, at the Seminaire Signal-Image, IRISA, Rennes, France, November 28, 
1996, at the International Symposium on Mathematical Theory of Networks and Systems 
(MTNS), Saint Louis, MO, June 24-28, 1996, at the 36th IEEE Conference on Decision 
and Control (CDC), San Diego, December 10-12, 1997 and at the symposium on Sto- 
chastic Control and Nonlinear Filtering, Los Angeles, December 13-15, 1997; by Laurent 
Mevel at the workshop on Hidden Markov Models, Evry, France, April 24, 1997, and at 
the 4th European Control Conference (ECC), Brussels, July 1-4, 1997. 
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6 Report of Inventions 

"Method of Optimal Stochastic Filtering for Tracking Objects with Possibly Numerical 
Dynamics" 

7 Technology Transfer 

The developed nonlinear filtering technology (particularly, track-before-detect algorithm 
based on this technology) is in the process of transfer to the small business company as 
well as to the TRW Data Technologies Division (Systems Integration Group) under the 
1998 SBIR-STTR program. It is expected that the developed ideas will be used in both 
radar and electro-optical warning systems in BMDO programs. 
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Aegir Systems (Oxnard, CA) is applying our numerical S3 algorithm for the devel- 
opment of a tracking filter. Testing of Aegir's tracker indicates that the advantage of 
the proposed approach is especially significant for angle-only tracking of resolved or sub- 
resolved targets (IR, EO search and track systems) when signal-to-noise ratio is extremely 
low (-3dB to -6dB). 
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